Díaz-Rodríguez, E. (2025). RLHF y RLAIF, Revolución Silenciosa de la Retroalimentación Educativa. HETS Online Journal, 15(2), 33-48. https://doi.org/10.55420/2693.9193.v15.n2.33

 Díaz-Rodríguez, E. (2025). RLHF y RLAIF, Revolución Silenciosa de la Retroalimentación EducativaHETS Online Journal15(2), 33-48. https://doi.org/10.55420/2693.9193.v15.n2.33

Abstract

Reinforcement learning from feedback has emerged as an innovative technique in machine learning, enhancing artificial intelligence (AI) model training. Current research compares two key approaches: RLHF (Reinforcement Learning from Human Feedback) and RLAIF (Reinforcement Learning from AI Feedback). Most studies demonstrate a preference for RLAIF due to its superior scalability (Khedri & Höglund, 2023; Lee et al., 2022; Zhichao et al., 2024).  However, other researchers advocate for a hybrid approach that strategically combines both methods (Dakota, 2024). These complementary frameworks can synergistically improve machine learning processes.

by evondue in pixabay




Comments

Popular posts from this blog

Liderando la revolución digital: Estrategias de evaluación en la era del Chatbot